Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2308478121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489389

RESUMO

The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump-probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.


Assuntos
Compostos Férricos , Prochlorococcus , Compostos Férricos/química , Proteínas de Ligação ao Ferro/metabolismo , Prochlorococcus/metabolismo , Ferro/metabolismo , Oxirredução , Transferrina/metabolismo , Água/química , Compostos Ferrosos/química , Cristalografia por Raios X
2.
Physiol Rep ; 12(6): e15979, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38490814

RESUMO

Postural orthostatic tachycardia syndrome (POTS) is characterized by an excessive heart rate (HR) response upon standing and symptoms indicative of inadequate cerebral perfusion. We tested the hypothesis that during lower body negative pressure (LBNP), individuals with POTS would have larger decreases in cardiac and cerebrovascular function measured using magnetic resonance (MR) imaging. Eleven patients with POTS and 10 healthy controls were studied at rest and during 20 min of -25 mmHg LBNP. Biventricular volumes, stroke volume (SV), cardiac output (Qc), and HR were determined by cardiac MR. Cerebral oxygen uptake (VO2 ) in the superior sagittal sinus was calculated from cerebral blood flow (CBF; MR phase contrast), venous O2 saturation (SvO2 ; susceptometry-based oximetry), and arterial O2 saturation (pulse oximeter). Regional cerebral perfusion was determined using arterial spin labelling. HR increased in response to LBNP (p < 0.001) with no group differences (HC: +9 ± 8 bpm; POTS: +13 ± 11 bpm; p = 0.35). Biventricular volumes, SV, and Qc decreased during LBNP (p < 0.001). CBF and SvO2 decreased with LBNP (p = 0.01 and 0.03, respectively) but not cerebral VO2 (effect of LBNP: p = 0.28; HC: -0.2 ± 3.7 mL/min; POTS: +1.1 ± 2.0 mL/min; p = 0.33 between groups). Regional cerebral perfusion decreased during LBNP (p < 0.001) but was not different between groups. These data suggest patients with POTS have preserved cardiac and cerebrovascular function.


Assuntos
Síndrome da Taquicardia Postural Ortostática , Humanos , Síndrome da Taquicardia Postural Ortostática/diagnóstico por imagem , Pressão Negativa da Região Corporal Inferior , Débito Cardíaco/fisiologia , Circulação Cerebrovascular/fisiologia , Frequência Cardíaca/fisiologia , Pressão Sanguínea/fisiologia
3.
Beilstein J Nanotechnol ; 14: 1208-1224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169939

RESUMO

Inspired by the eumelanin aggregates in human skin, polydopamine nanoparticles (PDA NPs) are promising nanovectors for biomedical applications, especially because of their biocompatibility. We synthesized and characterized fluorescent PDA NPs of 10-25 nm diameter based on a protein containing a lysine-glutamate diad (bovine serum albumin, BSA) and determined whether they can penetrate and accumulate in bacterial cells to serve as a marker or drug nanocarrier. Three fluorescent PDA NPs were designed to allow for tracking in three different wavelength ranges by oxidizing BSA/PDA NPs (Ox-BSA/PDA NPs) or labelling with fluorescein 5-isothiocyanate (FITC-BSA/PDA NPs) or rhodamine B isothiocyanate (RhBITC-BSA/PDA NPs). FITC-BSA/PDA NPs and RhBITC-BSA/PDA NPs penetrated and accumulated in both cell wall and inner compartments of Escherichia coli (E. coli) cells. The fluorescence signals were diffuse or displayed aggregate-like patterns with both labelled NPs and free dyes. RhBITC-BSA/PDA NPs led to the most intense fluorescence in cells. Penetration and accumulation of NPs was not accompanied by a bactericidal or inhibitory effect of growth as demonstrated with the Gram-negative E. coli species and confirmed with a Gram-positive bacterial species (Staphylococcus aureus). Altogether, these results allow us to envisage the use of labelled BSA/PDA NPs to track bacteria and carry drugs in the core of bacterial cells.

4.
Cancers (Basel) ; 14(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36291841

RESUMO

The difficulty involved in the treatment of many tumours due to their recurrence and resistance to chemotherapy is tightly linked to the presence of cancer stem cells (CSCs). This CSC sub-population is distinct from the majority of cancer cells of the tumour bulk. Indeed, CSCs have increased mitochondrial mass that has been linked to increased sensitivity to mitochondrial targeting compounds. Thus, a platinum-based polyethylenimine (PEI) polymer-drug conjugate (PDC) was assessed as a potential anti-CSC therapeutic since it has previously displayed mitochondrial accumulation. Our results show that CSCs have increased specific sensitivity to the PEI carrier and to the PDC. The mechanism of cell death seems to be necrotic in nature, with an absence of apoptotic markers. Cell death is accompanied by the induction of a protective autophagy. The interference in the balance of this pathway, which is highly important for CSCs, may be responsible for a partial reversion of the stem-like phenotype observed with prolonged PEI and PDC treatment. Several markers also indicate the cell death mode to be capable of inducing an anti-cancer immune response. This study thus indicates the potential therapeutic perspectives of polycations against CSCs.

5.
Chem Biol Interact ; 367: 110167, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36087816

RESUMO

Cancer stem cells (CSCs) represent a difficult to treat cellular niche within tumours due to their unique characteristics, which give them a high propensity for resistance to classical anti-cancer treatments and the ability to repopulate the tumour mass. An attribute that may be implicated in the high rates of recurrence of certain tumours. However, other characteristics specific to these cells, such as their high dependence on mitochondria, may be exploited for the development of new therapeutic agents that are effective against the niche. As such, a previously described phosphorescent N-heterocyclic carbene iridium(III) compound which showed a high level of cytotoxicity against classical tumour cell lines with mitochondria-specific effects was studied for its potential against CSCs. The results showed a significantly higher level of activity against several CSC lines compared to non-CSCs. Mitochondrial localisation and superoxide production were confirmed. Although the cell death involved caspase activation, their role in cell death was not definitive, with a potential implication of other, non-apoptotic pathways shown. A cytostatic effect of the compound was also displayed at low mortality doses. This study thus provides important insights into the mechanisms and the potential for this class of molecule in the domain of anti-CSC therapeutics.


Assuntos
Antineoplásicos , Citostáticos , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Caspases/metabolismo , Citostáticos/farmacologia , Irídio/metabolismo , Irídio/farmacologia , Metano/análogos & derivados , Células-Tronco Neoplásicas/metabolismo , Superóxidos/metabolismo
6.
Gels ; 8(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448111

RESUMO

The synthesis of surgical adhesives is based on the need to design glues that give rise to strong and fast bonds without cytotoxic side effects. A recent trend in surgical adhesives is to use gel-forming polymers modified with catechol groups, which can undergo oxidative crosslinking reactions and are strongly adhesive to all kinds on surfaces in wet conditions. We previously showed that blending gelatin with catechol can yield strong adhesion when the catechol is oxidized by a strong oxidant. Our previous work was limited to the study of the variation in the sodium periodate concentration. In this article, for an in-depth approach to the interactions between the components of the gels, the influence of the gelatin, the sodium periodate and dopamine/(pyro)catechol concentration on the storage (G') and loss (G″) moduli of the gels, as well as their adhesion on steel, have been studied by shear rheometry. The hydrogels were characterized by infrared and UV-Vis spectroscopy and the size of their pores visualized by digital microscopy and SEM after freeze drying but without further additives. In terms of adhesion between two stainless steel plates, the optimum was obtained for a concentration of 10% w/v in gelatin, 10 mM in sodium periodate, and 20 mM in phenolic compounds. Below these values, it is likely that crosslinking has not been maximized and that the oxidizing environment is weakening the gelatin. Above these values, the loss in adhesiveness may result from the disruption of the alpha helixes due to the large number of phenolic compounds as well as the maintenance of an oxidizing environment. Overall, this investigation shows the possibility to design strongly adhesive hydrogels to metal surfaces by blending gelatin with polyphenols in oxidative conditions.

7.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35216181

RESUMO

Resistance to antifungal therapy of Candida albicans and non-albicans Candida strains, frequently associated with oral candidosis, is on the rise. In this context, host-defense peptides have emerged as new promising candidates to overcome antifungal resistance. Thus, the aim of this study was to assess the effectiveness against Candida species of different Catestatin-derived peptides, as well as the combined effect with serum albumin. Among Catestatin-derived peptides, the most active against sensitive and resistant strains of C. albicans, C. tropicalis and C. glabrata was the D-isomer of Cateslytin (D-bCtl) whereas the efficiency of the L-isomer (L-bCtl) significantly decreases against C. glabrata strains. Images obtained by transmission electron microscopy clearly demonstrated fungal membrane lysis and the leakage of the intracellular material induced by the L-bCtl and D-bCtl peptides. The possible synergistic effect of albumin on Catestatin-derived peptides activity was investigated too. Our finding showed that bovine serum albumin (BSA) when combined with the L- isomer of Catestatin (L-bCts) had a synergistic effect against Candida albicans especially at low concentrations of BSA; however, no synergistic effect was detected when BSA interacted with L-bCtl, suggesting the importance of the C-terminal end of L-bCts (GPGLQL) for the interaction with BSA. In this context in vitro D-bCtl, as well as the combination of BSA with L-bCts are potential candidates for the development of new antifungal drugs for the treatment of oral candidosis due to Candida and non-Candida albicans, without detrimental side effects.


Assuntos
Candidíase Bucal/tratamento farmacológico , Cromogranina A/farmacologia , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Animais , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/metabolismo , Candidíase Bucal/metabolismo , Bovinos , Farmacorresistência Fúngica/efeitos dos fármacos , Humanos , Soroalbumina Bovina/metabolismo
8.
Zookeys ; 1042: 41-50, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163289

RESUMO

The Formidable Pygmy Grasshopper, Notocerus formidabilis Günther, 1974 (Tetrigidae: 'Malagasy Metrodorinae'), is certainly a stunning, extraordinary insect. Despite the fact that the species was described almost 50 years ago, its beauty had remained completely hidden until recently. The bright yellow colouration of the minute warts on its dorsal hump and even brighter purple-yellowish colouration of its abdomen have been, tragically, completely lost in museum specimens. Luckily, photographs of three live females taken in 2007, 2009 and 2015 were recently uploaded to the iNaturalist platform by the first author of this paper, where they were identified as N. formidabilis by the middle and last authors. Along with a male and a female discovered in the MNHN collections (Paris) and the holotype female, these are the only records of the species. All six records are presented and depicted in the present study, and the variation of the species is discussed for the first time. This rare species seems to be endemic to NE Madagascar, a region of truly wonderful diversity.

9.
Biomaterials ; 275: 120969, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34157563

RESUMO

Dental pulp stem cells (DPSCs) are a promising cell source for regeneration of dental pulp. Migration is a key event but influence of the microenvironment rigidity (5 kPa at the center of dental pulp to 20 GPa for the dentin) is largely unknown. Mechanical signals are transmitted from the extracellular matrix to the cytoskeleton, to the nuclei, and to the chromatin, potentially regulating gene expression. To identify the microenvironmental influence on migration, we analyzed motility on PDMS substrates with stiffness increasing from 1.5 kPa up to 2.5 MPa. We found that migration speed slightly increases as substrate stiffness decreases in correlation with decreasing focal adhesion size. Motility is relatively insensitive to substrate stiffness, even on a bi-rigidity PDMS substrate where DPSCs migrate without preferential direction. Migration is independent of both myosin II activity and YAP translocation after myosin II inhibition. Additionally, inhibition of Arp2/3 complex leads to significant speed decrease for all rigidities, suggesting contribution of the lamellipodia in the migration. Interestingly, the chromatin architecture remains stable after a 7-days exposure on the PDMS substrates for all rigidity. To design scaffold mimicking dental pulp environment, similar DPSCs migration for all rigidity, leaves field open to choose this mechanical parameter.


Assuntos
Polpa Dentária , Células-Tronco , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Matriz Extracelular
10.
Sci Rep ; 10(1): 14817, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908163

RESUMO

Secreted extracellular matrix components which regulate craniofacial development could be reactivated and play roles in adult wound healing. We report a patient with a loss-of-function of the secreted matricellular protein SMOC2 (SPARC related modular calcium binding 2) presenting severe oligodontia, microdontia, tooth root deficiencies, alveolar bone hypoplasia, and a range of skeletal malformations. Turning to a mouse model, Smoc2-GFP reporter expression indicates SMOC2 dynamically marks a range of dental and bone progenitors. While germline Smoc2 homozygous mutants are viable, tooth number anomalies, reduced tooth size, altered enamel prism patterning, and spontaneous age-induced periodontal bone and root loss are observed in this mouse model. Whole-genome RNA-sequencing analysis of embryonic day (E) 14.5 cap stage molars revealed reductions in early expressed enamel matrix components (Odontogenic ameloblast-associated protein) and dentin dysplasia targets (Dentin matrix acidic phosphoprotein 1). We tested if like other matricellular proteins SMOC2 was required for regenerative repair. We found that the Smoc2-GFP reporter was reactivated in adjacent periodontal tissues 4 days after tooth avulsion injury. Following maxillary tooth injury, Smoc2-/- mutants had increased osteoclast activity and bone resorption surrounding the extracted molar. Interestingly, a 10-day treatment with the cyclooxygenase 2 (COX2) inhibitor ibuprofen (30 mg/kg body weight) blocked tooth injury-induced bone loss in Smoc2-/- mutants, reducing matrix metalloprotease (Mmp)9. Collectively, our results indicate that endogenous SMOC2 blocks injury-induced jaw bone osteonecrosis and offsets age-induced periodontal decay.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Proteínas de Ligação ao Cálcio/genética , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Microscopia Eletrônica de Varredura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Dente/metabolismo
11.
Nanomedicine ; 29: 102256, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32615337

RESUMO

In bone tissue engineering, stem cells are known to form inhomogeneous bone-like nodules on a micrometric scale. Herein, micro- and nano-infrared (IR) micro-spectroscopies were used to decipher the chemical composition of the bone-like nodule. Histological and immunohistochemical analyses revealed a cohesive tissue with bone-markers positive cells surrounded by dense mineralized type-I collagen. Micro-IR gathered complementary information indicating a non-mature collagen at the top and periphery and a mature collagen within the nodule. Atomic force microscopy combined to IR (AFM-IR) analyses showed distinct spectra of "cell" and "collagen" rich areas. In contrast to the "cell" area, spectra of "collagen" area revealed the presence of carbohydrate moieties of collagen and/or the presence of glycoproteins. However, it was not possible to determine the collagen maturity, due to strong bands overlapping and/or possible protein orientation effects. Such findings could help developing protocols to allow a reliable characterization of in vitro generated complex bone tissues.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Colágeno/genética , Durapatita/uso terapêutico , Engenharia Tecidual , Colágeno/química , Humanos , Microscopia de Força Atômica , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos
12.
Sci Rep ; 8(1): 12655, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30140058

RESUMO

Mechanical properties of the cellular environment are known to influence cell fate. Chromatin de-condensation appears as an early event in cell reprogramming. Whereas the ratio of euchromatin versus heterochromatin can be increased chemically, we report herein for the first time that the ratio can also be increased by purely changing the mechanical properties of the microenvironment by successive 24 h-contact of the cells on a soft substrate alternated with relocation and growth for 7 days on a hard substrate. An initial contact with soft substrate caused massive SW480 cancer cell death by necrosis, whereas approximately 7% of the cells did survived exhibiting a high level of condensed chromatin (21% heterochromatin). However, four consecutive hard/soft cycles elicited a strong chromatin de-condensation (6% heterochromatin) correlating with an increase of cellular survival (approximately 90%). Furthermore, cell survival appeared to be reversible, indicative of an adaptive process rather than an irreversible gene mutation(s). This adaptation process is associated with modifications in gene expression patterns. A completely new approach for chromatin de-condensation, based only on mechanical properties of the microenvironment, without any drug mediation is presented.


Assuntos
Adaptação Biológica/genética , Reprogramação Celular , Montagem e Desmontagem da Cromatina , Eucromatina/metabolismo , Heterocromatina/metabolismo , Microambiente Tumoral , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Elasticidade , Regulação Neoplásica da Expressão Gênica , Humanos
13.
Eur J Oral Sci ; 125(1): 8-17, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28084688

RESUMO

Latent-transforming growth factor beta-binding protein 3 (LTBP-3) is important for craniofacial morphogenesis and hard tissue mineralization, as it is essential for activation of transforming growth factor-ß (TGF-ß). To investigate the role of LTBP-3 in tooth formation we performed micro-computed tomography (micro-CT), histology, and scanning electron microscopy analyses of adult Ltbp3-/- mice. The Ltbp3-/- mutants presented with unique craniofacial malformations and reductions in enamel formation that began at the matrix formation stage. Organization of maturation-stage ameloblasts was severely disrupted. The lateral side of the incisor was affected most. Reduced enamel mineralization, modification of the enamel prism pattern, and enamel nodules were observed throughout the incisors, as revealed by scanning electron microscopy. Molar roots had internal irregular bulbous-like formations. The cementum thickness was reduced, and microscopic dentinal tubules showed minor nanostructural changes. Thus, LTBP-3 is required for ameloblast differentiation and for the formation of decussating enamel prisms, to prevent enamel nodule formation, and for proper root morphogenesis. Also, and consistent with the role of TGF-ß signaling during mineralization, almost all craniofacial bone components were affected in Ltbp3-/- mice, especially those involving the upper jaw and snout. This mouse model demonstrates phenotypic overlap with Verloes Bourguignon syndrome, also caused by mutation of LTBP3, which is hallmarked by craniofacial anomalies and amelogenesis imperfecta phenotypes.


Assuntos
Amelogênese/genética , Esmalte Dentário/anormalidades , Proteínas de Ligação a TGF-beta Latente/genética , Ameloblastos/metabolismo , Amelogênese Imperfeita/genética , Animais , Esmalte Dentário/ultraestrutura , Genótipo , Masculino , Camundongos , Camundongos Mutantes , Microscopia Eletrônica de Varredura , Mutação , Osteocondrodisplasias/genética , Fenótipo , Calcificação de Dente/genética , Fator de Crescimento Transformador beta/genética , Microtomografia por Raio-X
14.
Mater Sci Eng C Mater Biol Appl ; 72: 620-624, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28024630

RESUMO

Metal coordination between polyphenols and metal cations like Fe3+ allows to produce conformal homogeneous and robust coatings on a vast variety of materials. The deposition kinetics and the stability of the obtained films are however only poorly investigated. In the present article it is shown that rough, granular but pinhole free coatings up to 50nm in thickness can be obtained in a one pot manner using pyrocatechol (Pyr)/Fe3+ mixtures at different stoichiometries (with Fe3+/Pyr ratios equal to 0.55 or 1.10) provided the deposition time is extended up to 24h. More importantly, we show that these films are dissolved upon oxidation of Pyr in cyclic voltammetry experiments. When the films deposited during short durations are rinsed with buffer and subsequently re-exposed to Pyr containing solution, they undergo partial dissolution most probably through a ligand exchange process. Such a dissolution process does not occur anymore in the same conditions, when the deposition time is increased above 5h. All Pyr-Fe3+ based films can be stabilized by a post-deposition of a polyelectrolyte multilayer film based on the alternated adsorption of poly(allylamine hydrochloride) and the sodium salt of poly(styrene sulfonate). The deposition of 5 bilayers of these polyelectrolytes allows suppressing the dissolution of Pyr-Fe3+ based films produced for short deposition times.


Assuntos
Catecóis/química , Compostos Férricos/química , Técnicas Eletroquímicas , Eletrodos , Cinética , Microscopia Eletrônica de Varredura , Espectrofotometria Ultravioleta
15.
J Biomater Appl ; 31(6): 844-850, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30208803

RESUMO

Congenital diaphragmatic hernia is a severe disease requiring diaphragm replacement mostly with expanded polytetrafluoroethylene. Unfortunately, the recurrence rate is high due to prosthesis failure with significant morbidity for the child. To provide a better understanding of the integration and possible failure processes of the biomaterial implanted in humans, we conducted electron microscopical and mechanical assessments on a prosthesis explant from a child with congenital diaphragmatic hernia presenting a recurrence. Our findings show a major penetration of connective tissue into the expanded polytetrafluoroethylene on the rough side, whereas the smooth side presents few tissue colonization. This penetration is more important in the central area (area A) with large collagen bundles and layers, in comparison to the peripheral areas without prosthesis failure (area B), where few extracellular matrix is produced. The connective tissue penetrates the prosthesis in depth. In contrast, the peripheral areas with prosthesis failure (area C) show very few cells and extracellular matrix, with an oriented organization in comparison to areas A and B. Obviously, the forces applied on the implanted material modulate the cellular behavior of the newly developed tissues. Atomic force microscopic measurements of the biomaterials' surfaces may explain some cellular behaviors according to areas with or without failure.

16.
Front Physiol ; 7: 673, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28111553

RESUMO

Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations.

17.
Hum Mol Genet ; 24(11): 3038-49, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25669657

RESUMO

Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder.


Assuntos
Amelogênese Imperfeita/genética , Proteínas de Ligação a TGF-beta Latente/genética , Osteocondrodisplasias/genética , Adolescente , Amelogênese Imperfeita/diagnóstico por imagem , Animais , Sequência de Bases , Criança , Consanguinidade , Análise Mutacional de DNA , Feminino , Mutação da Fase de Leitura , Estudos de Associação Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação de Sentido Incorreto , Osteocondrodisplasias/diagnóstico por imagem , Linhagem , Radiografia , Deleção de Sequência
18.
Biomaterials ; 37: 144-55, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25453945

RESUMO

Substrate stiffness is known to strongly influence the fate of adhering cells. Yet, little is known about the influence of the substrate stiffness on chromatin. Chromatin integrates a multitude of biochemical signals interpreted by activation or gene silencing. Here we investigate for the first time the organization of chromatin of epithelial cells on substrate with various mechanical properties. On stiff substrates (100-200 kPa), where cells preferentially adhere, chromatin is mainly found in its euchromatin form. Decreasing the Young modulus to 50 kPa is correlated with a partial shift from euchromatin to heterochromatin. On very soft substrates (≪10 kPa) this is accompanied by cell lysis. On these very soft substrates, histone deacetylase inhibition by adding a drug preserves acetylated histone and thus maintains the euchromatin form, thereby keeping intact the nuclear envelope as well as a residual intermediate filament network around the nucleus. This allows cells to survive in a non-adherent state without undergoing proliferation. When transfer on a stiff substrate these cells retain their capacity to adhere, to spread and to enter a novel mitotic cycle. A similar effect is observed on soft substrates (50 kPa) without need of histone deacetylase inhibition. These new results suggest that on soft substrates cells might enter in a quiescence state. Cell quiescence may thus be triggered by the Young modulus of a substrate, a major result for strategies focusing on the design of scaffold in tissue engineering.


Assuntos
Montagem e Desmontagem da Cromatina , Módulo de Elasticidade , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Módulo de Elasticidade/efeitos dos fármacos , Eletrólitos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Eucromatina/metabolismo , Heterocromatina/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
19.
ACS Nano ; 4(8): 4792-8, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20731454

RESUMO

Thin films and surface coatings play an important role in basic and applied research. Here we report on a new, versatile, and simple method ("precipitation coating") for the preparation of inorganic films, based on the alternate spraying of complementary inorganic salt solutions against a receiving surface on which the inorganic deposit forms. The method applies whenever the solubility of the deposited material is smaller than that of the salts in the solutions of the reactants. The film thickness is controlled from nanometers to hundreds of micrometers simply by varying the number of spraying steps; 200 spray cycles, corresponding to less than 15 min deposition time, yield films with thicknesses exceeding one micrometer and reaching tens of micrometers in some cases. The new solution-based process is also compatible with conventional layer-by-layer assembly and permits the fabrication of multimaterial sandwich-like coatings.


Assuntos
Precipitação Química , Compostos Inorgânicos/química , Nanotecnologia/métodos , Fluoreto de Cálcio/química , Oxalato de Cálcio/química , Fosfatos de Cálcio/química , Microscopia Eletrônica de Varredura , Porosidade
20.
Oncogene ; 24(49): 7337-45, 2005 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16007129

RESUMO

The retinoblastoma protein (pRB) is encoded by the RB1 gene whose promoter contains several putative binding sites for ICBP90 (Inverted CCAAT box Binding Protein of 90 kDa), a transcriptional regulator of the topoisomerase IIalpha gene. ICBP90 has two consensus binding sites for pRB in its primary sequence. Here, we show that pRB and ICBP90 co-immunoprecipitate in cell extracts of proliferating human lung fibroblasts and of proliferating or confluent Jurkat cells. GST pull-down assays and immunocytochemistry, after cell synchronization in late G1 phase, confirmed this interaction. Overexpression of ICBP90 induces downregulation of pRB expression in lung fibroblasts as a result of mRNA decrease. DNA chromatin immunoprecipitation experiment shows that ICBP90 binds to the RB1 gene promoter under its methylated status. Overexpression of ICBP90 increases the S and G2/M phase cell fractions of serum-starved lung fibroblasts as assessed by flow cytometry analysis and increases topoisomerase IIalpha expression. Together, these results show that ICBP90 regulates pRB at the protein and gene transcription levels, thus favoring the entry into the S phase of the cells. We propose that ICBP90 overexpression, found in cancer cells, is involved in the altered checkpoint controls occurring in cancerogenesis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Fase G1 , Regiões Promotoras Genéticas/genética , Proteína do Retinoblastoma/genética , Fase S , Western Blotting , Imunoprecipitação da Cromatina , DNA Topoisomerases Tipo II/fisiologia , Regulação para Baixo , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Imunoprecipitação , Células Jurkat/citologia , Células Jurkat/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Dados de Sequência Molecular , Proteína do Retinoblastoma/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...